Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano.

نویسندگان

  • Kaja Wasik
  • James Gurtowski
  • Xin Zhou
  • Olivia Mendivil Ramos
  • M Joaquina Delás
  • Giorgia Battistoni
  • Osama El Demerdash
  • Ilaria Falciatori
  • Dita B Vizoso
  • Andrew D Smith
  • Peter Ladurner
  • Lukas Schärer
  • W Richard McCombie
  • Gregory J Hannon
  • Michael Schatz
چکیده

The free-living flatworm, Macrostomum lignano has an impressive regenerative capacity. Following injury, it can regenerate almost an entirely new organism because of the presence of an abundant somatic stem cell population, the neoblasts. This set of unique properties makes many flatworms attractive organisms for studying the evolution of pathways involved in tissue self-renewal, cell-fate specification, and regeneration. The use of these organisms as models, however, is hampered by the lack of a well-assembled and annotated genome sequences, fundamental to modern genetic and molecular studies. Here we report the genomic sequence of M. lignano and an accompanying characterization of its transcriptome. The genome structure of M. lignano is remarkably complex, with ∼75% of its sequence being comprised of simple repeats and transposon sequences. This has made high-quality assembly from Illumina reads alone impossible (N50=222 bp). We therefore generated 130× coverage by long sequencing reads from the Pacific Biosciences platform to create a substantially improved assembly with an N50 of 64 Kbp. We complemented the reference genome with an assembled and annotated transcriptome, and used both of these datasets in combination to probe gene-expression patterns during regeneration, examining pathways important to stem cell function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional signatures of somatic neoblasts and germline cells in Macrostomum lignano

The regeneration-capable flatworm Macrostomum lignano is a powerful model organism to study the biology of stem cells in vivo. As a flatworm amenable to transgenesis, it complements the historically used planarian flatworm models, such as Schmidtea mediterranea. However, information on the transcriptome and markers of stem cells in M. lignano is limited. We generated a de novo transcriptome ass...

متن کامل

The Flatworm Macrostomum lignano Is a Powerful Model Organism for Ion Channel and Stem Cell Research

Bioelectrical signals generated by ion channels play crucial roles in many cellular processes in both excitable and nonexcitable cells. Some ion channels are directly implemented in chemical signaling pathways, the others are involved in regulation of cytoplasmic or vesicular ion concentrations, pH, cell volume, and membrane potentials. Together with ion transporters and gap junction complexes,...

متن کامل

The Hippo pathway regulates stem cells during homeostasis and regeneration of the flatworm Macrostomum lignano.

The Hippo pathway orchestrates activity of stem cells during development and tissue regeneration and is crucial for controlling organ size. However, roles of the Hippo pathway in highly regenerative organisms, such as flatworms, are unknown. Here we show that knockdown of the Hippo pathway core genes in the flatworm Macrostomum lignano affects tissue homeostasis and causes formation of outgrowt...

متن کامل

Evidence for Karyotype Polymorphism in the Free-Living Flatworm, Macrostomum lignano, a Model Organism for Evolutionary and Developmental Biology

Over the past decade, the free-living flatworm Macrostomum lignano has been successfully used in many areas of biology, including embryology, stem cells, sexual selection, bioadhesion and aging. The increased use of this powerful laboratory model, including the establishment of genomic resources and tools, makes it essential to have a detailed description of the chromosome organization of this ...

متن کامل

A novel flatworm-specific gene family implicated in reproduction in Macrostomum lignano

Free-living flatworms, such as the planarian Schmidtea mediterranea, are extensively used as model organisms to study stem cells and regeneration. The majority of studies in planarians so far focused on broadly conserved genes. However, investigating what makes these animals different might be equally informative for understanding its biology. Here, we present a re-analysis of neoblast and germ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 40  شماره 

صفحات  -

تاریخ انتشار 2015